
On the Sum of the Squares 
of Two Consecutive Integers 

By Edward L. Cohent 

I. Introduction. Solutions of n2 + (n + 1)2 = qk are examined, where q is a prime 
< 109, and k is an integer > 1. Note from Hardy and Wright [1, p. 219, Theorem 
252] that if e has in its factorization any prime 3 (mod 4), then n2 + (n + 1)2 $ 
for any 1 (positive). So only the numbers that have prime factors = 1 (mod 4), 
have to be considered. Here, we deal only with primes q _ 1 (mod 4), where q < 109, 
and a few other primes with 109 < q < 1000. L. Aubry [2] proved that x2 + 
(X + 1)2 # mk if k is not a power of 2. 

Notice that 12 + 22 = 5, 32 + 42 = 52, 22 + 32 = 13, 1192 + 1202 = 134, 
202 + 212 = 292, 42 + 52 = 41, and 52 + 62 = 61. Excluding these possibilities, 
there is the 

THEOREM. n2 + (n + 1)2 $ qkfor all primes q < 109. 
The theorem [3] was previously proven (in a slightly different manner) for 

q = 5. 
Observe that 

(1) n2+ (n+ 1)2 =qk 

is equivalent to 

(2) Z2 2q k_1 , 

for if Z = 2n + 1, (1) comes from (2), and if n = (Z - 1)/2, (2) comes from (1). 
Some facts are stated about Gaussian integers. The integers are of the form 

a + bi, where a and b are natural integers. Unique factorization holds, and the only 
units are + , -, +i, -i. 

II. Case 1: 41, 5, 13, 29, 37, 53, 61, 101, and 109. A special solution is required 
for every prime q in Case 1. We select 41; the results for all the primes in Case 1 
are in Table I, and their results can be compared with those of 41. 

Let us factor (1) for q = 41: [(n + 1) + ni][(n + 1) - ni] = (5 + 4i)k(5 - 4i)lk 

= k *. pjk, with the possible inclusion of some units. Should (n + 1) + ni or (n + 1) 
-ni have as factors both 5 + 4i and 5 - 4i, it would have a factor of 41. Hence, 
its real and imaginary parts, n + 1 and n, would both be divisible by 41, which is 
impossible. (A similar argument shall be omitted later.) 

Now, 42 + 52 = 41, so solutions with k > 2 must be sought. The following 
lemma must first be proven. 

LEMMA. n is a solution (-) n = 651 or -652 (mod 412). 

Proof. If n runs through the integers mod 41, namely 0, 1, 2, ..., 40, then 
n2 + (n + 1)2 0 O (mod 41) () n - 4 or n = 36 (i.e., -5) (mod 41). 
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Suppose n 4 (mod 41). Then n = 41r + 4. Substituting this in n2 + (n + 1)2 
= 41k, the following is obtained: 

(3) 2*41r2 + 18r + 1 = 41k-I 

or r -16 (mod 41), r = 411 - 16, and hence n = 4121 - 652. Son -652 
(mod 412). 

If n -5 (mod 41), the same type of calculation shows that n -651 (mod 
412). Q.E.D. 

The above lemma can also be proved by using [4, p. 79]. In fact, [4] can be used 
to prove the lemma in the general case for a prime of the form 4t + 1. 

Now, (5 + 4j)k = Xk + iYk, SO 

(4) (Xk+l + iYk?l) = (Xk + iYk)(5 + 4i) = (5Xk - 4Yk) + (4Xk + 5Yk)i; 

therefore, Xk+1 = 5Xk - 4yk, and Yk+1 = 4Xk + 5Yk. It can be seen that both 
Xk and Yk satisfy 

(5) Zk+2 = 1OZk?l - 41Zkv 

Let Zj = (,u + ua)/2 = [(5 + 4i) i + (5- 4i) i]/2. (Since [(n + 1) + ni][(n + 1) 
- ni] = [n + (n + 1)i][n - (n + 1)i], we could have the possibility that Zk either 
= ?n or i(n + 1) mod 412; i.e., Zk = 41651 or -t652 (mod 412).) Thus, Zo = 1, 
Z= 5. We use Zo, Z1, and the formula Zj+2 = 1OZjl - 41Zj (mod 412). 

We say that a sequence is quasi-periodic when two successive residue classes 
repeat except possibly with a change of sign. By (5), the sequence is quasi-periodic, 
since Z1- Z206 (mod 412) and Z2 Z207 (mod 412). The sequence repeats with a 
quasi-period of 205. Also, of Zo, Z1, *..., Z20o only Z71 = ?651 or 4652. The table 
below indicates what we are interested in: 

k addendum Zk Zk-l Zk-2 

1 -651 431 244 
276 205 -651 431 244 
481 205 -651 431 244 
686 205 -651 431 244 

(Actually the sequence connected with 41 is periodic, but the sequences connected 
with 5, 13, 29, 53, 101, and 109 are quasi-periodic. Also, note that if ,u = 4 + 5i 

were used the same k and addendum would be obtained.) 
Hence, it is shown that only 71, 71 + 1.205, 71 + 2 205, * can yield solu- 

tions of n2 + (n + 1)2 = 41k. We prove that this cannot happen. 
Notice that k =71 (mod 205). If 2 .41k - 1 is a square, then it is a quadratic 

residue for any modulus. This is an immediate consequence of the definition of a 
quadratic residue. Since 41205 = 1 (mod 83), 2 41711.41205s - 1 53 (mod 83), 
s > 0. As 53 is a nonsquare (mod 83), it is proven that 2 .41k -1 =53 (mod 83) is 
a nonsquare for the relevant cases. This completes the proof. 

Tables II and III deal with 13 and 53 respectively. It was not possible to find 
one prime (like 83 above) with a corresponding nonsquare. Therefore, with 13 and 
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53 several primes were used. To check whether a number is a square or a nonsquare 
modulo a prime, one can use quadratic residue theory [1, Chapter VI]. 

III. Case 2: 17, 73, 89, 97, and Others Under 1000. A special solution is required 
for every prime in Case 2. We select 17; the others are proved in the same manner. 

Let us factor (1) for q = 17: [(n + 1) + ni][(n + 1) - ni] = (4 + i)k (4-i)k 
=-k . jhk with the possible inclusion of some units. The following lemma is first 
proven. 

LEMMA. n is a solution (=) n 6 or -7 (mod 17). 
Proof. If n runs through the integers mod 17, namely 0, 1, 2, * ,16, then 

n2 + (n + 1)2 0 (mod 17) (=) n = 6 or 10 (i.e., -7) (mod 17). Q.E.D. 
Now, (4 + i)k = Xk + iYk, SO 

(6) (Xk+l + iYk+l) = (Xk + iYk)(4 + i) = (4Xk - Yk) + (Xk + 4Yk)i; 

therefore, Xk+1 = 4Xk - Yk, and Yk+1 = Xk + 4Yk. It can be seen that both Xk 

and Yk satisfy 

(7) Zk+2 = 8Zk+l - 17Zk. 

Let Zj = (p+ ? i)/2 = [(4 + i) i + (4 - i) i]/2. These give Zo and Z1. We use 
Zo, Zi, and the formula Zj+2 8Zj+l - 17Zj (mod 17). The sequence is quasi- 
periodic with quasi-period 4. We have 

zo zi Z2 Z3 Z4 Z5 Z6 Z7 ... 

1 4 -2 1 8 -4 2 -1,... 

which does not give i6, ?7. 
Other Primes in Case 2. Other primes q in Case 2 < 109 are 73, 89, and 97. The 

primes in Case 2 with 109 < q < 1000 are 157, 193, 233, 241, 257, 281, 337, 349, 
353, 401, 409, 433, 449, 461, 541, 577, 601, 617, 641, 661, 673, 709, 769, 821, 881, 
929, 937, and 977. The proofs are omitted. 
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